
Improving Search Relevance in
Question Answering Engine
Whitepaper by Abinaya Mahendiran, Assistant Manager, NEXT Labs;
Faustina Selvadeepa, Senior Software Engineer, NEXT Labs

Contents

 1. Introduction 1

 2. System Architecture 1

3. Data 2

 a. Term Frequency-Inverse Document Frequency 2

 b. Bag of Words 3

 c. Multi-label Classification 3

 d. Latent Dirichlet Allocation 3

 e. Generic Score 4

 f. Principal Component Analysis 4

4. Results 5

1.
Introduction
The Question Answering (QA) system is an information retrieval system. Unlike search engines, they

automatically answer questions posted by users in natural language rather than just providing links

or references to the answer. Traditionally, a structured database of information known as knowledge

base is used to store questions and corresponding answers - and a computer program is used to

query this knowledge base for relevant answers. Since the knowledge base contains humungous

data, it takes a lot of time to search for relevant information.

In a development environment, most of the developers’ time goes into finding the right solution for

their technical queries. QA systems help in reducing search times by providing the most relevant

solution to the users’ query, with the help of various Natural Language Processing (NLP) techniques

and Machine Learning (ML) algorithms. These algorithms collectively form the central part of the QA

system’s scoring mechanism that is described in this paper.

2.
System architecture
Fig. 1 gives the overall system architecture of the QA system. When a user enters a query in the

search engine, a subset of questions that match the query are extracted and fed into the system.

The Term Frequency-Inverse Document Frequency (TF-IDF) and Bag of Words (BoW) modules

are feature engineering models that extract the relevant features from the data for multi-label

classification module and Latent Dirichlet Allocation (LDA) module respectively.

The multi-label classification module predicts tags for each question and generates a score.

Likewise, the LDA module extracts topics for each question and generates a score. A generic

module generates an aggregated score from measures like upvotes/downvotes to an answer,

favorite count, etc., - if available in the data. All the scores mentioned above are passed into a

Principal Component Analysis (PCA) module, which rank orders the questions based on relevance.

| 1

Contextual Modules

Features

Tags

Topics

Score

Score

Multi-label
Classification

Topic Model
– LDA

TF-IDF

BOW

PCA
Rank
Order

Questions

Question
- Favorite Count
- Score
- Cumulative
 Answer Score

Answer
- Average
 Answer
 Score

User
Query

Search
Engine

Elastic
Search/Solr

Generic Modules

Generic Score

Question
Subset

Fig. 1 - System architecture

2 |

3.
Data
The QA system’s knowledge base draws data from various Community Question and Answer

(CQA) sites. Data must contain questions and their corresponding answers, along with tags. Tags

provide a useful way to group a related question-answer together and each question-answer pair

can have multiple tags. The QA system can thus adapt to any ‘question-answer’ data, irrespective

of the domain.

The following sections describe the different modules in detail.

a) Term Frequency-Inverse Document Frequency
Term Frequency-Inverse Document Frequency (TF-IDF) is a scoring measure used to evaluate

how important a word is to a document in a collection or corpus. This importance increases

proportionally to the number of times a word appears in the document but is offset by the frequency

of the word in the corpus. Thus, lesser weightage is given to the most commonly occurring words -

and a higher weightage to the rare and most informative word.

TF-IDF(t) = TF (t in a document) * IDF(t)

• TF(t) = # of times the term appears in document/total # of terms in document

• IDF(t) = log (total # of documents/# of documents with term in it)

Every question passed into this module is reduced to a vector of real numbers, each of which

represents ratios of counts. The result is a term-by-document matrix X whose columns contain the

tf-idf values for each of the documents in the corpus.

Fig. 2 - A snapshot of tf-idf scores for each term in a document

Do
cu
m
en
ts

Terms

ability amazons come ec2 image instances know looking new running save server

doc1 0.274259 0.151581 0.226533 0.076613 0.147465 0.147025 0.102992 0.148132 0.130282 0.123239 0.218816 0.09427

doc2 0 0 0 0 0 0 0 0 0 0 0 0

doc3 0 0.060632 0 0.061291 0 0 0.082393 0 0 0 0 0

doc4 0 0 0 0 0 0 0 0 0 0 0 0

doc5 0 0 0 0 0 0 0 0 0 0 0 0

doc6 0 0 0 0 0 0 0 0 0 0.079939 0 0

doc7 0 0 0 0 0 0 0 0 0 0 0 0

doc8 0 0 0 0 0 0 0.030144 0 0 0.03607 0 0

doc9 0 0 0 0 0 0 0 0 0 0 0 0

doc10 0 0 0 0 0 0 0 0 0 0 0 0

b) Bag of Words

Bag of Words (BoW) is a way of extracting features from text for use in ML algorithm.

A bag-of-words is a representation of text that describes the occurrence of words within a

document. It involves two things:

• A vocabulary of known words

• A measure of the presence of known words

Fig. 3 - A snapshot of BoW approach

c) Multi-label Classification
Multi-label classification is the problem of finding a model that maps inputs x to binary vectors y

(assigning a value of 0 or 1 for each element (label) in y).

Fig. 4 shows that each entity can be associated with more than one class.

As question-answer pair in our dataset belongs to multiple tags, a multi-

label classifier assigns more than one label/tag to each question.

d) Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a generative probabilistic model of a

corpus. It is used to classify text in a document into latent topics. Given

a query, LDA groups it into a cluster of similar topics.

At the end of Realization stage, it is mandate to finalize the data migration strategy so that it becomes

easy to migrate from any database to another one without any hassle. The migration planning is

fractionalized as per these following steps:

The boxes are ‘plates’. The outer plate represents

documents, while the inner plate represents

the repeated choice of topics and words within

a document. There are three levels to LDA

representations. The parameters α and β are corpus

level parameters, assumed to be sampled once in the

process of generating a corpus. The variables θd are

document-level variables, sampled once per document.

Finally, the variables zn and wn are word-level variables and

are sampled once for each word in each document.

I am feeling very happy today sick wish could dance like my sister
Doc1 1 1 1 1 1 1 0 0 0 0 0 0 0
Doc2 1 1 0 0 0 1 1 0 0 0 0 0 0
Doc3 2 0 0 0 0 0 0 1 1 1 1 1 1

D1 - ""I am feeling very happy today"
D2 - " I am sick today"
D3 - "I wish I could dance like my sister"

Instance Classes

1 A,B

2 A

3 A,B

4 C

5 B

6 A

Fig. 4 - Multi-label classification

Fig. 5 - Latent Dirichlet Allocation (LDA)

| 3

4 |

LDA assumes the following generative process for each document w in a corpus D:

• Choose N _ Poisson(ζ)
• Choose q _ Dir(α)

• For each of the N words Wn:

 o Choose a topic Zn _ Multinomial(q)
 o Choose a word Wn from p(Wn | Zn, β), a multinomial probability conditioned on the topic Zn

• Parameterize probabilities by a k × V matrix β where βij = p(Wj = 1|Zi = 1), which for now we treat

as a fixed quantity that is to be estimated

• A k-dimensional Dirichlet random variable θ can take values in the (k −1)-simplex

(a k-vector θ lies in the (k−1)-simplex if θi ≥ 0, ∑k
i=1 θi = 1)

• Probability density on this simplex: where the parameter α

is a k-vector with components αi > 0, and where Γ(x) is the Gamma function

• Find Joint Distribution p(θ, z, w│α, β)= p(θ│α) ∏ =1 p (Zn│θ)p(Wn│Zn, β), where p(Zn|θ) is simply

θi for the unique i such that zi
n=1.

• Calculate marginal distribution of a document

• p(w│α, β)=ꭍ p(w│α) (∏ =1∑
Zn

 p (Zn│θ)p(Wn│Zn, β)dƟ

• Calculate product of marginal probabilities of, we obtain the probability of a corpus: p(D │α,β)=

Nd

• Calculate Z = Calculate p(D|α, β)

• Output the significant z values greater than a given threshold

e) Generic Score
Generic score is calculated by aggregating the feedback scores available in the data.

These measures could include upvotes/downvotes for each question and answer, favorite count,

cumulative answer score, etc.

f) Principal Component Analysis

The main idea of Principal Component Analysis (PCA) is to reduce the dimensionality of a

d -dimensional data set consisting of many variables correlated with each other by projecting it onto

a (k)-dimensional subspace (where k<d) to increase the computational efficiency while retaining

most of the information.

A summary of the PCA approach:

• Standardize the data

• Obtain eigenvectors and eigenvalues from the covariance matrix or correlation matrix – or,

perform Singular Vector Decomposition. The covariance between two features is

calculated as follows:

Search Engine Results Scoring Module Results

Title Title

SQL Query to split data based on
column value

SQL Filter based on results from SQL query

SQL Query where clause filter based on
another column value

Filter based on column value match in SQL

SQL Query to order data based on
other column value

SQL Query to get column result conditionally
based on column value

Selective Filter rows based on column Value SQL SQL select query based on a column value

Filter based on column value match in SQL SQL Query to display a name based on column value

SQL PIVOT Query, column based on value
Split a column into two columns based on
filter value in query

| 5

Doc_ID PCA_score

27267 1.261710149

5545438 1.133725711

3980968 1.124644981

3140779 1.102559411

2499132 1.066664645

We can summarize the calculation of the covariance matrix via the following matrix equation:

where x¯ is the mean vector

• Sort eigenvalues in descending order and choose the k eigenvectors that correspond to the

k largest eigenvalues where k is the number of dimensions of the new feature subspace (k≤d)

• Construct the projection matrix W from the selected k eigenvectors

• Transform the original dataset X via W to obtain a k-dimensional feature subspace Y

Fig. 6 - Score from the PCA module

 4.

Results
The question-answer pair from the CQA sites is fed into the hybrid model and ranked, based on the

various scores given by the modules.

Query: How to filter data based on a column value in sql?

Fig. 7 - Results from scoring module

Doc_ID PCA_score

7136337 1.04800105

6525270 1.031511975

3578430 1.02635061

701545 1.01282737

The snapshot above compares the results of scoring module with the traditional search engine.

The scoring module provides more relevant results when compared to the search engine results.

6 | | 11| 7www.mphasis.com

N
R

19
/0

3/
20

 U
S

LE
TT

ER
 B

AS
IL

60
41

UK
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

Copyright © Mphasis Corporation. All rights reserved.

For more information, contact: marketinginfo.m@mphasis.com

USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity
is foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power
of cloud and cognitive to provide hyper-personalized (C = X2C2

TM = 1) digital experience to clients and their end customers. Mphasis’ Service
Transformation approach helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise,
enabling businesses to stay ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain
expertise and specialization are key to building strong relationships with marquee clients. To know more, please visit www.mphasis.com

Abinaya Mahendiran
Assistant Manager at Mphasis NEXT Labs

Abinaya Mahendiran is an Assistant Manager at Mphasis NEXT Labs. She holds a Master’s
degree in Computer Science with a specialization in Machine Learning and Deep Learning
from International Institute of Information Technology Bangalore (IIIT-B). Her research areas
include Natural Language Understanding/Processing, Machine Learning, Deep Learning
and MLOps. She has an extensive software engineering and data science experience.
At NEXT Labs, she has been building and productionizing NLU/NLP solutions for various
clients both on premise and on cloud.

Faustina Selvadeepa
Senior Software Engineer at Mphasis NEXT Labs

Faustina Selvadeepa is a Senior Software Engineer at Mphasis NEXT Labs. She holds
a Master’s degree in Computer Application. Her research areas include Natural Language
Processing and Machine Learning. She has worked on various client PoCs and helped
in building one of the Mphasis IP, InfraGraf®.

Authors

www.mphasis.com

