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1. 
Introduction
As an applied field, Machine Learning (ML) is rapidly maturing from a research- and 

experimentation- heavy framework (which required significant investments) to a ‘productionalized’ 

enabler of solutions for mainstream industries.

Along with ‘productionalization’ comes the business requirement to make solutions faster, better 

and less expensive. Conventional software development and deployment have adopted DevOps 

practices to shorten the systems development lifecycle and provide continuous delivery with 

high software quality. The data science practice, on the other hand, has adopted best practices 

from DevOps in their own development and deployment framework calling it MLOps. The focus 

here is more on collaboration, tracking and monitoring, deployment, quality of production ML and 

enhanced automation. One of the areas which is both core to data science and has a significantly 

high cycle time is model development.  

Traditional ML processes are inherently time-consuming and dependent on human intervention 

and expertise. The theorem of “no free lunches” also implies that the only scenario when an 

approach outperforms another is when it is customized to the specific problem on hand. This 

means that the model development invariably has to go through the pains of data preparation, 

feature engineering, model training, evaluation and selection every time a new dataset is 

encountered or a new problem arises.  

Automated Machine Learning (AutoML) aims to automate and accelerate the process 

of building ML and deep learning models. It allows us to provide the labelled training data 

as input and receive an optimized model as output. This functionality enables data scientists 

to generate accurate insights by leveraging the capabilities of Machine Learning.  

AutoML allows professionals from various domains to leverage the benefits of data science 

and ML. It accelerates processes, reduces errors and costs and provides greater accuracy of 

results by training multiple high performing models. Most of a data scientist’s time is invested in 

mundane tasks such as data pre-processing and feature engineering. Introduced to cut down 

time spent on iterative tasks concerning model development, AutoML channelizes more of their 

time and resources into model selection and model tracking so that data scientists can deal 

with more complex problems. These tools have helped developers to build scalable models with 

pipeline output acceleration.	
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2.
ML Pipeline and the Need for AutoML
An ML pipeline is used to automate ML workflows and implement AutoML solutions. 
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The pipeline starts with ingesting raw data, which is then engineered to suit algorithm and domain 

requirements by leveraging data cleaning and feature engineering techniques. A ML model is then 

trained on this data and validated by hyperparameter tuning. The best performing model is then 

deployed and used for production. 

Fig.1: Machine Learning Pipeline

Fig.2: Forbes’ Insights
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As can be seen from Fig. 2, data cleaning and preparation occupies 60 percent of a data 

scientist’s workload. Tasks such as cleaning the data and exploring multiple models to select the 

most accurate one can be easily automated using AutoML frameworks. 

AutoML automates ML pipeline components in the following ways:

Data Preprocessing 

A crucial step in the ML pipeline, data preprocessing enhances data quality and enables the  

user to draw meaningful insights. It also makes the data suitable for ML algorithms and  

enables a smooth ML pipeline. As real-world data can be inaccurate and inconsistent, it is  
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therefore imperative to clean, format and structure it to make it model-ready and gain relevant 

insights. Most ML practitioners face the challenge of processing data accurately and efficiently.  

It is believed that around 80 percent of a data scientist’s time is spent on preprocessing the data 

and making it usable.

Data preprocessing involves the following steps:

Handling missing values

Often while data is collected, some fields and values do go missing. AutoML frameworks can 

detect missing values and apply data imputation techniques to ensure that crucial data points are 

not ignored by the algorithm.

Depending on the data type, AutoML can impute either the mean, median or mode of the column. 

Other techniques include imputing by a constant value specified by the user to the nearest 

neighbour (KNN) value – or, predicting missing values using regression algorithms in the column 

detected with missing values. 

Handling outliers

Outliers are anomalous data points that may negatively affect test results. A few methods for 

outlier detection and removal can be used in AutoML software.

•	 Isolation Forest identifies and detects anomalies instead of profiling data points. The process 	

	 can be automated by passing a data frame through an Isolation Forest algorithm.

•	 Local Outlier Factor is extremely useful when the dataset has a small number of features.  

	 It is a technique that attempts to harness the idea of nearest neighbours for outlier detection 	

	 and can be leveraged for automatic detection of outliers.

Encoding 

Most ML algorithms only accept numerical data. Categorical variable encoding is a fundamental 

step in the smooth functioning of a ML pipeline. AutoML encodes categorical variables in  

two ways:

•	Label Encoding - Dependent categorical variables/ordinal categorical variables 

•	One Hot Encoding - Usually for nominal independent categorical variables 

Though these processes are not completely automated, they are increasingly coming under the 

scope of AutoML pipelines.

Feature Engineering

This is the next step after data preprocessing. An essential function of any ML algorithm is to 

accurately and efficiently identify and predict features. For this to happen, the algorithms must 

receive structured data to enhance their predictive power. Feature engineering often requires 

domain knowledge to define and manipulate features to serve a business purpose.
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Feature transformation

Feature transformation refers to creating new features from existing ones. Although few 

algorithms transform features internally (such as support vector machines), a few explicit ways  

of feature transformation include:

•	 Feature Scaling and Normalizing - Scaling and normalizing techniques are not only 		

	 essential for efficient computing, but also for distance-based algorithms. Based on the 		

	 data type, AutoML can automate scaling and normalizing techniques. 

•	 Aggregation - This combines values in a feature to reduce variability in data.

•	 Filtering - This is mostly used in Time Series to regulate the frequency in the dataset by 		

	 determining threshold values.

Feature selection

Feature Selection techniques include choosing a specific set of variables that are appropriate for 

subsequent analysis. The goal is to come up with the smallest set of features that best represent 

the data characteristics. A few methods used for feature selection are:

•	 Filter Method - This is the fastest method that eliminates highly correlated variables. 		

	 It includes metrics such as Pearson’s Correlation, which identifies variables that are highly 		

	 correlated and automatically eliminates one of them.

•	 Wrapper Method - This is the most accurate method, but is very computationally intensive. 	

	 It consists of algorithms such as Forward Selection, Backward Elimination, Recursive 		

	 Feature Elimination and Bi-directional Elimination.

•	 Embedded Method - Embedded methods include regularization techniques such as Ridge 	

	 Regression, Lasso Regression and ElasticNet Regression. These techniques are most 		

	 commonly used in AutoML frameworks and aim to reduce variance while model training.

Dimensionality reduction

This reduces high-dimensional data to a more manageable one to not only improve performance 

but also improve accuracy of ML algorithms. One of the most common ways to perform 

Dimensionality Reduction is Principal Component Analysis, which aims to capture the maximum 

amount of variability in the dataset and map it to a smaller dimension.

However, Feature Engineering can be tricky since it largely depends on the data type of the 

variable and the application. For instance, ordinal variables can be considered categorical as 

well as discrete. In the case of a categorical data type, scaling and normalizing reduces the 

interpretability of the data and is not ideal. Thus, even though scaling and normalizing can be 

automated for incorporating in the AutoML frameworks, some kind of human intervention  

is needed.

Model Training and Hyperparameter Tuning 

Once the features are ready, the next step is to train a model. Model training encompasses a huge 

variety of ML algorithms that can be leveraged to get a desired predicted value. Each model has 
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its benefits and is fit to be used in specific use cases. An important aspect of model training is 

model validation and hyperparameter tuning. It is essential that the ML model works as accurately 

and efficiently in the real world as it does on training data. Usually, after training a model, it is also 

run on a validation set to ensure that the model performs equally well on a different dataset than 

the training one. Often, it is difficult to find the most optimal model architecture in the beginning. 

Hyperparameter tuning is widely used for model validation and model tuning, and is the process  

of finding the most optimal hyperparameters for best accuracy. 

A few methods of hyperparameter tuning include:

1.	Manual Search with Cartesian Grid.

2.	Grid Search Cross Validation, a popular hyperparameter technique leveraged by many data 		

	 scientists, automates hyperparameter tuning by specifying the number of validations. Random 	

	 Search can be implemented by AutoML frameworks by specifying a grid search technique such 	

	 as “Random Discrete”. 

Model Inferencing and Deployment

After building and training the ML model, we must now test the model and evaluate its performance 

in the real world. A testing dataset is provided to predict and evaluate model performance using 

various metrics of accuracy and the model is sent to production for deployment and  

day-to-day use. 

3.
Prominent Open-source AutoML Frameworks

H2O.ai
H2O is an open-source machine learning platform developed by H2O.ai. H2O is available for 

all major preferred languages like R, Python, Java, Scala, etc., and has customized versions 

of the machine learning and deep learning algorithms for the platform leading to enhanced 

performance. The H2O AutoML automates tasks like feature engineering, model validation, model 

tuning, model selection and model deployment. Some of the main features of H2O AutoML are:

•	 Available through scripting in multiple languages as well as through a Web GUI (Flow)

•	 Customization of AutoML tasks available through passing of parameters

•	 Native capability of many data preparation tasks like missing value imputation, transformations, etc.

•	 Has an excellent model selection framework including forming stacked ensembles

•	 Good integration with big data platforms like Hadoop, Spark, etc.

•	 Large and active user and contributor base

•	 Difficult to use with other frameworks like scikit learn
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PyCaret
PyCaret is available as an open-source library in Python and claims to be a low code framework 

reducing the model development time. This is actually the Python version of “caret” package in R. 

The operations performed using PyCaret become part of a custom pipeline that is ready for 

deployment without any additional processing. It provides a Python based wrapper around most 

of the popular machine learning libraries such as scikit-learn, XGBoost, LightGBM and even 

natural language processing and deep learning frameworks, etc. 

•	 It allows for defining the various data preprocessing and transformation operations to perform 	

	 using its setup() function

•	 It also allows to compare, evaluate and tune many standard machine learning algorithms 		

	 through its compare_models() and tune_model() functions

•	 Ensembling models, saving pipelines and deploying the pipelines that are available

•	 Supports supervised learning algorithms

•	 No GUI interface is available

Auto-Sklearn
Auto-Sklearn is built around the widely used scikit-learn. It extends the concept of configuring 

a general Ml framework with efficient goal optimization by building an ensemble of all models 

tested during the global optimization. It also uses Bayesian Hyperparameter Optimization via 

Meta-Learning wherein it uses knowledge from previous optimization that runs on various 

datasets to identify the best algorithm-hyperparameter combination. 

•	 Available with 15 classification algorithms and 14 feature engineering pipelines

•	 Natively handles scaling, encoding and missing values

•	 Sometimes ensembling fails to converge

•	 Meta-feature computation process can be compute intensive and slow

TPOT (Tree-Based Pipeline Optimization Tool)
One of the initial AutoML methods was the TPOT. It creates a combination of a flexible expression 

tree representation of ML pipelines with stochastic search algorithms while using algorithms in 

the scikit-learn library. While TPOT uses the scikit-learn framework, it has its own regressor and 

classifier methods. 

•	 Training time can be restricted by setting a time limit or population size. Its search space can 	

	 be restricted by a configuration file. 

•	 The optimization process can be paused and resumed

•	 The biggest feature of TPOT is that it can port the optimized pipeline to code to be further 		

	 modified manually
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•	 TPOT cannot automatically process natural language inputs and categorical inputs must be 	

	 integer encoded before feeding the data

•	 Since it uses genetic programming, running times can be long before a high accuracy is 		

	 attained, but given time, it will find the best parameters

4.
Case Study 
This project was executed for one of the largest pharmaceutical companies of the world.  

The manufacturing process in the industry has very high standards of quality controls and has 

to adhere to extremely stringent regulations. If any issue is detected during the manufacturing 

process, it undergoes a rigorous process of root cause analysis with corrective and preventive 

actions (CAPA) to avoid issue recurrence. Once an issue has been identified and logged, a Quality 

Assurance Review (QAR) process is initiated. In this process, the issue needs to be analyzed and 

actioned to place controls in an established timeframe. Any delay in the QAR process leads to 

loss of productivity and revenue along with compliance issues. 

The client requested for a ML-based solution to identify causes that could delay their QAR, so 

that more resources could be allocated with greater management focus.

An AutoML solution was implemented for efficient execution of tasks such as data  

preprocessing and feature engineering and increased accuracy of the predictive model.  

Since the dependent column is categorical, this is a classification problem. The proposed  

solution was implemented by leveraging PyCaret and H2O.ai frameworks.

The leaderboards generated by both the frameworks are given below:

Fig.3: PyCaret Leaderboard
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Fig.4: H2O Leaderboard

Pipeline Step PyCaret H2O.ai

Preprocessing

Missing Values Mean/Constant value Mean/Constant value

Outliers Single Value Decomposition Isolation Forest

Fixing Imbalance SMOTE
Oversampling and Undersampling 
based on specified proportion value

Feature Engineering

Feature Scaling
Normalization; Box-Cox for target 
transformation

Standardization, Normalization

Feature Aggregation
Creates new columns through 
interaction of existing features

Limits Categorical levels to most 
relevant

Feature Selection Removes Multicollinearity/PCA PCA

Model Training Machine Learning models
Machine Learning models, Deep 
Learning Models, Stacked Ensembles

Model Validation
Hyperparameter Tuning using 
RandomSearch, GridSearch, 
Bayesian Search

Hyperparameter Tuning using 
RandomSearch and GridSearch

Model Deployment Model saved as Pickle file Model saved as MOJO/POJO file

Use Cases
Classification, Regression, 
Clustering, Anomaly Detection, NLP

Classification, Regression, Clustering

Best Performing Model Logistic Regression Gradient Boosting Machine

Best Accuracy Score 0.6748 0.7089

Total Training Time 9.48 minutes 4.54 minutes

The table shows that H2O.ai outperforms PyCaret in not only accuracy, but also in training 

time. H2O’s best model, Gradient Boosting Machine, gave an accuracy of 70.89 percent while 

PyCaret’s best performing model, Logistic Regression, gave an accuracy of 67.48 percent. 

PyCaret also trained 15 models in 9.48 minutes while H2O trained 10 models in 4.54 minutes.



5.
Benefits of AutoML
As we see, the key tenets of ML involve various processes. Some of these processes such as 

data preprocessing and model tuning are mundane and require little to no human intervention. 

With a significant rise in ML applications over the past few years, AutoML has gained much 

traction. It not only minimizes the workload on data science professionals, but also enables 

citizen data scientists to leverage the benefits of ML solutions. 

AutoML provides distinct advantages of:
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Speed
The process of training multiple models and choosing one with the best accuracy is an important 

aspect of any ML solution. Finding the model with the most optimal hyperparameter can take 

several iterations. Apart from this, some complex ML algorithms can take up to several hours 

to train and may still not provide satisfactory results. Most AutoML frameworks aim to mitigate 

this problem by training several algorithms concurrently along with hyperparameter tuning, thus 

drastically reducing time. 

Accuracy
Most ML algorithms fail when exposed to test datasets - either due to high variance or high 

bias during the feature engineering and model training processes. AutoML reduces bias by 

limiting human intervention and automating most processes in the ML pipeline, and also reduces 

variance by evaluating the model against different validation datasets. AutoML frameworks 

often perform validation techniques such as GridSearch Cross-Validation or RandomizedSearch 

against different validation datasets to choose the algorithm that gives the highest accuracy and 

is best suited for the problem statement. 

Scalability
AutoML aims to automate the entire ML pipeline - right from data preprocessing to model 

deployment. For many problem statements such as Time Series Analysis, with a constant influx 

of new data, AutoML provides a framework that not only monitors the data, but also constantly 

trains and improves the algorithms based on the new incoming data. Most AutoML frameworks 

also provide GPU accelerators to handle large amounts of data and train multiple complex 

algorithms simultaneously. These frameworks also involve distributed systems which enable 

multiple ML models to be trained simultaneously. 

Optimization of ML Processes
One of the key benefits of an AutoML framework is its ability to explore multiple algorithms with 

ideal hyperparameters resulting in an extremely accurate system.



Reduced Resource Expenditure 
Simultaneous processing of multiple algorithms optimizes time and cost. AutoML not only speeds 

up redundant processes, but also enables efficient processing of more complex steps in the  

ML pipeline. 

Democratization of the Power of ML-based Solutions 

ML is embedded in most business decisions today - and rightfully so. AutoML enables citizen ata 

scientists to perform complex ML tasks with just a few simple steps such as data ingestion and 

inferring the results. This enables individuals to leverage ML capabilities without advanced data  

science knowledge. 

Elimination of Errors due to Human Intervention 

Often with human intervention, excessive bias creeps into several ML tasks. AutoML minimizes 

human interference, thus reducing the scope of its errors.
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6.
Challenges
While AutoML systems can speedily generate predictive models to achieve near-optimal 

performances, their coverage is still narrow and raise few challenges such as lack of high-quality 

data and fixed optimization objectives. There exists a need for business and domain expertise to 

implement customized solutions. Few other challenges faced by an automated machine learning 

workflow include:

Data Inconsistency
Inconsistent data poses a huge challenge for an AutoML pipeline. Dealing with semi-structured and 

unstructured data can be tedious and often impossible to deal with by many AutoML frameworks. 

Explainability 

When the entire ML pipeline is automated, it may be difficult to explain certain aspects of the 

result, especially if it is not what the user wants. A key challenge in most AutoML frameworks is 

model explainability which arises due to minimal interference from the user. 

Need for Domain Expertise 

Often realistic objectives are lost behind the set AutoML framework and the results can be 

irrelevant in a business decision-making process. Sometimes, it may be necessary to customize 

a few aspects of the ML pipeline - for instance, removing a variable that is not important for a 

business decision. 
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7.
Conclusion
ML as an element of data science will continue the practice of hypothesis creation and 

experimentation. What AutoML strives to bring to the table is automating these aspects to 

identify the best performing algorithm from the available universe of features, algorithms and 

hyperparameters. AutoML promises to facilitate intelligent automation of repetitive tasks in 

the ML workflow. This enables high-value resources to move away from repetitive tasks to 

value-adding analysis and evaluation of best performing models. This will result in significant 

improvement in time-to-production of models and solutions built on these models. 

While AutoML systems can speedily generate predictive models to achieve near-optimal 

performances, their coverage is still narrow and their true potential still untapped. While we have 

seen increasing influence of AutoML in feature engineering and data preprocessing, there still 

exist areas of heavy domain-dependence, where it is more of an art than engineering. As an 

active area of research that is making rapid strides (with many players tackling existing issues 

in automating the entire model development process), AutoML will be a major capability to 

accelerate the adoption of ML-based solutions.
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