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1. Abstract
Machine Learning (ML) and Deep Learning (DL) models have made impressive progress in complex learning 
problems and revolutionized the field of artificial intelligence. However, the industrial adaptation of AI models in  
day-to-day applications is challenging due to security concerns related to adversarial attacks. Adversarial attacks  
are intended activities by scammers, cybercriminals, competitors and hackers to compromise the model 
performance, which includes accuracy, bias, fairness and/or exposing the sensitive data associated with them  
(for example training dataset, model inferences). The adversary attacks impact the model quality at various stages 
of its development life cycle, making it difficult to identify using existing evaluation approaches. Existing model 
evaluation approaches only identify the model performance issues occurring due to inefficiency in training data and 
model learning characteristics and cannot identify the vulnerabilities/behaviors of the attacks, trace their provenance 
and explain them to mitigate their risks.

Motivated by the limitations in existing evaluation models, in this article, we explain the impact of adversarial 
attacks on the AI/ML models and propose a Machine Learning (ML)  audit-based approach to evaluate the model’s 
robustness against adversarial attacks. This approach assesses the vulnerability of the model to different types of 
attacks and provides feedback on potential weaknesses. This feedback enables the model developers/deployers to 
identify and address potential security issues before the model is deployed in real-world scenarios.

Overall, this approach aims to provide a comprehensive solution to the security challenges faced by ML and 
DL models in the era of model vulnerabilities due to emerging trends in cyber-attacks and scams. Through an 
early detection of the vulnerabilities in the ML models, one can ensure reliability and trustworthiness in various 
downstream applications. The approach addresses the key concerns of ML systems to protect the data and internal 
behavior from various types of attacks. It discusses the necessary components and processes that are required to 
design a holistic and inclusive ML audit system to predict the model’s vulnerability and required trustworthiness.

2. Introduction
State-of-the-art AI models use data-driven models for prediction and are trained over large and protected datasets 
with expensive processing capabilities and training time. In addition, rigorous testing is required before making 
the trained models available for production. The production-grade AI models make inferences on unknown/new/
production data and are expected to deliver a high-quality predictions, safety and security. The whole life cycle of AI 
models is expensive. Yet, AI models made a remarkable progress in solving complex problems and production-ready 
off-the-shelf models are available through several cloud and individual offerings. 

According to Fortune Business Insights, the global Deep Learning market size is projected to grow from $17.60 
billion in 2023 to $188.58 billion by 2030, at a CAGR of 40.3% during the forecast period (Market Research 
Report, 2023). An increase in the usage of AI models in life-critical and real-world scenarios creates security and 
integrity concerns, especially in applications like self-driving cars, malware detection, drones, robotics, biometric 
authentication and automatic speech recognition, etc. (Dargan et al., 2020). Adversaries can manipulate legitimate 
inputs, in a manner imperceptible to humans, and cause trained models to produce incorrect outputs. Such attacks 
are recognized as adversarial attacks. 

Szegedy et al. (2013) are pioneers in addressing the susceptibility of well-performing deep neural networks to 
adversarial attacks. Li et al. (2020) demonstrated the vulnerability of Deep Neural Network (DNN) in autonomous 
vehicles, where an adversary manipulated traffic signs to deceive the DNN predictions. Carlini and Farid (2020) 
investigated vulnerabilities of the trained forensic classifier (Deep Learning model) that distinguishes between real 
and synthetic images. The adversarial attacks due to synthetic images can impact the models validating images 
including digital signatures and biometric identifiers leading to high risks and costs.
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Figure 1: Shows the evasion attack on out-of-distribution examples for a 
traffic sign recognition ML pipeline, from Sevtlana et al.

AI models are vulnerable to adversarial attacks through the training and inference phases of the model  
development life cycle to the deployment phase when unseen data is passed to manipulate the model output. 
Multiple countermeasures have been proposed in recent years to mitigate the effects of adversarial attacks.  
Kurakin et al. (2016) proposed using adversarial training to protect the learner by augmenting the training set using 
both original and perturbed data. Open-source frameworks are found to be efficient in performing specific classes of 
attacks and identifying the affected model. Some open-source frameworks are developed to perform attacks on  
ML and DL models, access the robustness through techniques such as ex-Adversarial ML Threat Matrix, and tools 
like Counterfit, Adversarial-robustness-toolbox (Dickson, 2021). 

The model robustness measures only explain the level of vulnerability of the model to attacks, in addition to other 
operational performance like prediction accuracy. To establish the trustworthiness of the AI models in real-world 
applications, it is important to understand the level of impact of adversarial attacks and the behavior of affected 
models. Therefore, tools to understand the level of robustness of the model to adversarial attacks are important and 
useful to the ecosystem. This whitepaper aims to propose the audit method to explain the level of robustness of the 
model to attacks and suggest their behavior in various deployment scenarios, enabling the developers/deployers to 
take early countermeasures to mitigate the concomitant loss.

The audit-based approach provides the user experts with insights into the model’s immunity to scammer attacks 

and readiness to deployment.

This whitepaper is organized as follows: section 3 discusses [1] the impact of various types of adversarial attacks on 
model and data; [2] safety, security and privacy; [3] a set of metrics to identify and quantify the model vulnerability; 
and section 4 explains a comprehensive audit-based approach to evaluate various adversarial attacks on the model, 
and measure the vulnerability. The approach presents the user with the overall robustness of the model and its 
readiness for production and inferencing. The whitepaper details the benefits of an audit-based approach and the 
necessity of a comprehensive approach to measure the robustness of an ML model.

3. Adversarial Attacks
Scammers, cybercriminals, competitors and hackers deliberately exploit the vulnerabilities of AI models by making 
small, often (human) imperceptible changes to the input data and nudging the model to make incorrect predictions. 
The manipulated input data can be in the form of images, audio, text or any other type of data the model is trained to 
predict. This section discusses the common types of adversarial attacks with relevant examples.

Evasion attacks (Chakraborty et al., 2018) are the most prevalent in real-time situations such as attempts to evade 
the detection of malware and email spam. In an evasion attack, the attacker adds controlled perturbation to the 
data and manipulates the input data to deceive previously trained and deployed classifiers. During inferencing, the 
classifier misclassifies due to intended intrusion in the inference data. This attack degrades real-time predictions of 
the classifier although they are trained with legitimate training datasets.

The seriousness of evasion attacks is illustrated through two examples. First, an evasion attack leads to undesirable 
consequences on face authentication systems which are deployed in different settings to verify a person’s identity. 
Assume that a facial authentication application is deployed to grant access to a secure building. An adversarial 
attack manipulates the input dataset in such a manner that it confuses the ML model to grant access to an attacker 
regardless of their identity. Such a compromised model-driven application may cause severe harm to the security of 
the building, resulting in a loss of trust and business.
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Figure 2: Poisoning attack example, showing the misclassification 
error by label-flipping from Liu et al., 2021

Second, an evasion attack may wreck the entire navigation features and safety system of Autonomous Vehicles (AV).  
For example, road sign recognition model is a critical component of the AV system to safely navigate the roads.  
The vehicle’s sensors and software use computer vision algorithms to identify road signs and interpret their meaning. 
An evasion attacker may modify the input data fed to road sign recognition models which may confuse a self-driving 
car to ignore a stop sign or misinterpret to exceed the speed limit. Such mispredictions could put passengers and 
other road users at potential risk of injury or death. Figure 1 shows an evasion attack on the ML model manipulating 
out-of-distribution samples and confusing the models to misinterpret the objects with high confidence.

Poisoning attack contaminates the training data or labels to alter the model’s decision boundary to make the  
model underperform during deployment/inferencing. During the model life cycle, a model is trained with legitimate 
training data. After deployment, the model is regularly re-trained on freshly collected data, to keep it relevant.  
An attacker mostly poisons the model by injecting malicious samples in re-training data, which subsequently 
disrupts or influences re-training outcomes (best predictions). Figure 2 shows the impact of poisoning in the 
inference stage if the classifier model is (re)trained with perturbed data.
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Privacy attacks are adversarial attacks with the primary goal of gaining knowledge from the model rather than 
deteriorating the model prediction performance. The privacy attackers intend to gain knowledge about: [1] the 
training data or properties of data, leading to data leakage and [2] model information to the extent of creating a 
model clone. The model information extraction enables an attacker to understand the internal workings of the model 
which can lead to manipulation of the model output. The privacy attacks are mainly of three types: membership 
inference, model inversion and model extraction.

1. Membership Inference Attack (MIA) tries to determine whether an input sample data has been used as part of
the training data (Shokri et al., 2017). The MIA is further categorized into: (1) the White-Box attacks in which the
attacker has access to model parameters, and (2) the Black-Box MIA in which the attacker has visibility only to
the model output (predictions) and predicts for multiple instances. Therefore, it is important to secure access to
the model parameters and gradients. Otherwise, effective White-Box membership inference attacks lead to high
accuracy of predictions for the attackers.

2. Model inversion attack attempts to recover the private dataset used to train a supervised ML model. A successful
model inversion attack generates realistic and diverse samples accurately describing each of the classes in
the private dataset. Often, the attacker in this case uses a public dataset arbitrarily to target the train dataset
(to be attacked).

3. Model extraction infers predictions of adversarial samples with the target ML model. Further, this sample and
prediction are used to reconstruct/re-engineer a fresh ML model to mimic the behavior of the target ML model.
For example, an extracted stock market prediction model can be used for financial benefit.

Table 1 summarizes the various types of adversarial attacks, implications on the model, data, and stages of different 
stages of the model development life cycle and useful metrics to interpret the robustness of the model towards a 
specific adversarial attack. Empirical robustness calculates the average minimum perturbation (to dataset) needed to 
create a successful attack. The successful attack is defined as the drop in the accuracy of the model (on perturbed 
data) by a predefined value. Loss sensitivity identifies the patterns in input data and allocates a high metric value for 
random data and a low value for real data. The CLEVER score measures the change in the gradient of loss between 
the actual training dataset and its adversarial samples and gives the level of memorization of the gradient loss  
(Weng et al. 2018).
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4. Audit-based Approach:
Quantify the Robustness of the Model

The current AI model development life cycle is supported and accelerated using MLOps techniques and tools, thus 
reducing the lead time of production readiness of the models. In the AI life cycle, the input training data is a critical 
component influencing the performance of the model. After following the best practices to improve the quality of 
input data and transforming the data for the training phase, multi-step iterations of model training begin.

Model validation, retraining and testing may lead to an improvement in the performance of the model over unseen 
data. During this process, the existing training-validation frameworks make it difficult to decipher if the model 
performance degradation is due to data manipulation or poor learning during the training. The recent frameworks 
around explainability show a promise to identify the causal factors influencing the model performance due to the 
data patterns and model training parameters. The current training-validation frameworks cannot identify intended 
adversarial attacks and activate protection mechanisms to ensure the model’s performance, safety and security. 
Furthermore, a model influenced by adversarial attack during the training passes the vulnerability to the entire 
AI model life cycle and downstream applications. Therefore, an audit-based approach to evaluate the model, 

identify adversarial attacks and identify the vulnerabilities is necessary in the AI model life cycle.

The proposed audit-based approach comprises capabilities to detect adversarial attack vulnerabilities of the AI 

model during various stages of its development life cycle. The approach comprises methods and tools to replicate 

cyber-attacks in a controlled fashion. A key component of the approach includes generating perturbed data, 

attacking or feeding the data to the prediction model and identifying the vulnerability of the model. The approach 

uses various measures that evaluate the level of model vulnerability and provides users with the measure of  model 

robustness.

Figure 3 shows an approach comprising the activities required for auditing the model to identify its vulnerability 

to adversarial attacks. The adversarial attacks require perturbed data to perform the attack on the target model. 

The data synthesized with a known level of perturbation are fed to AI models to deceive or mislead from expected 

inferences. Techniques such as FGSM and PGD are used to create a controlled perturbation in the data.

Adversarial attack
ML life cycle stages 

impacted
Impacts Metrics

Evasion Inference phase Model misclassification
Empirical robustness, Loss 
sensitivity, CLEVER score

Poisoning Training phase
Model learning and 

alters the model decision 
boundary

Difference in performance 
of models trained on 

perturbed and pure data

Membership  
inference attack

Training data
Leaking of private 

information about training 
data

Accuracy of attack model

Model inversion Training data
Adversary can generate 

training examples

Similarity of generated 
example and the true data 

point

Model extraction Model
Stealing of the model, its 

behavior

Difference in accuracy of 
the subject model on  

same dataset

Table 1: Different adversarial attacks, their impact and metrics to quantify robustness
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1. Fast Gradient Sign Method (FGSM) takes a single step in the direction of the sign of the gradient of the loss
function with respect to the input for generating adversarial examples to fool the model.

2. Projected Gradient Descent (PGD) is an iterative optimization-based method for generating adversarial
examples. It applies small perturbations to the input data over multiple iterations while constraining the
perturbations to stay within a predefined epsilon bound. PGD is known for its robustness against various
defense mechanisms.

3. DeepFool is an optimization-based technique with an aim to find the minimum adversarial perturbation required to
push an input sample across the decision boundary of a model. It iteratively estimates the minimum perturbation
based on the linear approximation of the decision boundary.

4.1 Model resilience measures
Table 1 shows a set of metrices to assess the robustness of the model against different kinds of adversarial attacks. 
The empirical robustness measures the minimum perturbation needed to perform a successful attack (Moosavi 
et al., 2016). CLEVER score (Weng et al., 2018) and the loss sensitivity (Arpit et al., 2017) quantify the robustness 
of the model. In addition to these metrices, sensitivity of model prediction performance to different levels of data 
perturbation can signify the model resilience. For example, in a poisoning attack, the difference in the accuracy of 
models trained on perturbed data and pure data can directly signify the model’s robustness to a poisoning attack.

4.2 Model adversarial attack
The proposed audit-based approach explores vulnerabilities of the model to various adversarial attacks such  
as evasion attacks, poisoning attacks, model inversion attacks and membership inference attacks by simulating 
these attacks. Evasion attack evaluation involves replicating a controlled perturbation of data examples fed to the 
model and measuring the loss in the performance. Poisoning attack evaluations are performed by strategically 
modifying a subset of the training data or generating synthetic data samples to introduce biases in the model.  
To measure the robustness, a model is trained on both original data and back-door imputed data. The difference 
in the performance of both models shows the model’s vulnerability. The model inversion attack is evaluated by 
querying the model multiple times to learn private information about the data used during the training process.  
The similarity between retrieved data and original data signifies the level of data leakage and hence the vulnerability 
of the model. Membership inference attacks aim to determine whether a specific data sample was part of the 
training dataset used to train the model. The model inversion attack evaluation is performed by training an attack 
model. The attack model’s accuracy on validation data can signify the robustness of the model. This approach gives 
a versatile process to audit the model and explain the vulnerability with selected metrices.

Figure 3: An audit-based approach for evaluating the 
adversarial attack on ML models
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5. Model Robustness Insights
Model robustness is a key aspect while building AI models to assure performance and reliability in diverse and 
challenging environments, ensuring practical applicability with security. The robustness against evasion attacks 
shows the model’s resistance against manipulated inferencing data while the robustness against poisoning  
attacks signifies the model’s ability to maintain performance even when trained on contaminated datasets. 
Membership Inference Attacks (MIA) robustness gauges the model’s vulnerability to data leakage against the  
training data information. Model inversion robustness measure ensures the protection of sensitive information of 
training data by analyzing the model’s outputs. In model extraction attacks, the robustness assesses the model’s 
resilience to adversaries such as trying to create accurate surrogates or model clones based on the target model’s 
response to queries.

6. Conclusion
The rapid growth in AI with the use of Deep Learning and Machine Learning models in life-critical decision-making 
led to the potential of adversarial attacks, creating vulnerabilities in models to compromise performance and data 
security. The proliferation of sophisticated attacks necessitates the assessment of the vulnerabilities of models to 
adversarial attacks before their deployment. The audit-based approach described in this paper enables complete 
evaluation and identification of model weaknesses at various stages of the Machine Learning pipeline. By proactively 
assessing and addressing these vulnerabilities, we can ensure the trustworthiness of Machine Learning systems and 
enhance protection against potential attacks.
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